Connect with us
  • Elysium


The Children’s Trust invests in its future



The Children's Trust supports young people living with brain injuries

A charity which supports children with brain injuries and their families is investing in the future of its operation by introducing new facilities and services, alongside expanding its community offering into new areas of the country.

The Children’s Trust has revealed plans to create a state-of-the-art centre of excellence on its site in Tadworth, Surrey, replacing its current school, which will help support the education, health, care and therapy needs of each young person who needs its services.

As part of its five-year strategy, the charity is also aiming to introduce five new services by 2024, the first of which will be its use of robotics and digital transformation.

Additionally, The Children’s Trust will expand its brain injury community services beyond its current five areas – Tadworth, St George’s in Tooting, Sheffield, Leeds and Nottingham – to add three more locations across the country.

It is also looking to create a national school information service, to support schools in their knowledge of, and ability to support children with, brain injury.

The expansion comes as the charity continues to commit to investing in its ability to support children and young people with brain injuries, despite the ongoing economic turbulence and significant drop in fundraising.

Chief executive Dalton Leong revealed that while a decrease in fundraising of up to £1.3 million was feared for the financial year, the reality will be around half of that, but nevertheless will leave the charity at least £650,000 down against its annual target to sustain its services.

And with new expenses including £165,000 on PPE in eleven months, the charity remains in need of financial support to help it continue with its plans.

“We know how difficult it is out there and I believe the charity sector has a huge part to play in society recovering from this pandemic,” he tells NR Times.

“If anything, my view on this has become amplified as time has progressed, with the work of ourselves and charities like ours helping to take immense pressure off the NHS frontline and make beds available at times of great need.

“We are all in this global pandemic together – charity, NHS, healthcare – and we all have a vital role to play. And we see our role in that as remaining positive and getting our strategy back on track and looking to the future and how we can do even more to support those who need it.”

The Children’s Trust’s five-year strategy, launched just prior to the onset of the pandemic in the UK last year, pioneered its vision for the future of its services. While much in the world has changed since then, Dalton is keen to keep to the plan as much as possible.

“It was all a bit uncertain at first, but eleven months on we are proactively planning for the next four years,” he says.

“We’ve been doing a lot of things in the background – the day to day priority has been keeping our children safe from COVID, but behind the scenes we’ve been looking at getting back on track for the future.

“But while we have these ambitions, and I’m confident we will achieve them, we will go at the pace which is right for our staff, volunteers and our young people. We need to make sure our people are with us.

“The effect the pandemic has had on them and their mental health is something we are very aware of, and looking after them will be the priority.”

Alongside its robotics and digitalisation plans are four other areas of development, which are still in the ‘ideas’ stage, with staff having the opportunity to pitch ideas to the charity’s Innovation Programme Board, chaired by Dalton.

“We have a number of ideas, but there are quite a few stages before they get to business plan stage. Robotics has gone to business plan, but we’re looking at a wider area than that going forward,” says Dalton.

“Digitalisation doesn’t stop at robotics and that has been very important during the pandemic. We’ve been doing needs assessments virtually, so speaking to doctors, nurses and families wherever they are in the country.

“Imagine doing that in a post-COVID world. It will save so much time and will make sure we can react even more quickly.”

Going forward, The Children’s Trust has much to be positive about with such future plans and ambition, although Dalton maintains some caution.

“We are trying to be positive but also realistic,” he says.

“We have lost a significant amount of fundraising, which has been very difficult, but we still have to offer our services to those who depend on us.

“There will be challenges going forward undoubtedly, but we remain absolutely committed to what we do. We have a fantastic team here who I am very proud of, they are a brilliant bunch, and we’re all working so hard to do the best for our children, young people and their families.”


Osteoarthritis: breaking the cycle

Medical technology company Ottobock shares its expertise on approaches to the condition.




Sponsored feature

Why is Cartilage Important?

Bones that come in contact with other bones are covered by cartilage at their contact points. Cartilage does not have blood vessels – it is supplied with nutrients through movement of the joint. That’s why regular exercise is so important!

Cartilage ensures that the joint surfaces move against each other in the most efficient way and with little friction. It absorbs shock, cushioning the joint, and distributes the forces acting on the joint.

If cartilage is damaged and its gliding properties are affected, it can no longer serve its purpose and the joints range of movement can become limited.

Typical Progression of Osteoarthritis

When osteoarthritis of the knee develops due to joint malalignment, an accident, advancing age, obesity or excessive strain, the damaged cartilage is no longer able to properly fulfil its function.

This results in pain and re­duced mobility. The affected patient instinctively assumes a relieving posture to reduce strain on the knee.

However, this often leads to new prob­lems in other places, such as the hip, and reduces the supply of nutrients to the cartilage, for which movement is required – sparking a vicious circle.

The cartilage develops cracks and begins to break down. At the same time, the bone thickens at the site of the damage.

When the cartilage layer is completely worn away, the affected bones come into direct contact and rub against each other causing joint pain and inflammation.

The thickest joint cartilage is located behind the kneecap (patella). This is an area of high stress. Osteoarthritis occurring in this area is known as patellafemoral osteoarthritis

Signs and Symptoms

There are several common symptoms that signal knee osteoarthritis. They can occur individually or together. However, with the initial onset, you may not notice any of these symptoms

When symptoms appear they usually occur in the following order:

  • Cracking in the joint
  • Pain during load bearing activities, such as carrying a heavy object
  • Pain during every day activities, such as climbing the stairs
  • Reduced mobility
  • Swelling and inflammation

Non-Invasive Treatments

Joint specific exercises: with regular exercise mobility can be maintained and muscle strengthened, ensuring the cartilage is supplied with the nutrients it needs.

Temperature: with acute inflammation, cold relieves pain and reduces swelling. Heat relaxes the muscles and tendons and increases the flow of nutrients. Heat may only be applied when the joint is not inflamed.

Creams: various over the counter products are available at your local pharmacy including gels and creams that can help relieve pain.

Orthopaedic devices (braces and supports): these are applied externally to the knee, reducing pain and improving mobility.

Lifestyle: living a healthy lifestyle can help to combat osteoarthritis. A healthy diet and an active lifestyle reduces the chance of obesity, putting less stress and strain through the knee joints.

Orthotic Options

An orthotic fitting is a key component in the treatment of osteoarthritis. It can provide the following:

  • Pain relief
  • Support daily activities
  • Support during activities that affect the joint, whether at work or during sports

Did you know?

An osteoarthritis patient takes an average of around 1,200 tablets a year to manage pain. But this can lead to damage to the stomach, bowel and liver.

An orthosis from the Agilium line is therefore a good alternative. It’s worth-while for anyone with knee osteoarthritis to test the effectiveness of the orthoses themselves.

The Agilium Line

The braces in our Agilium line are designed specifically to target the symptoms of osteoarthritis of the knee.

Each works in a different way to address the various characteristics of osteoarthritis of the knee. At the same time, we placed great emphasis on their comfort and suitability for daily use.

The Agilium Freestep, the Agilium Reactive and the Agilium Softfit are used to treat unicompartmental osteoarthritis of the knee.

The Agilium Patella is used for patients with patellofemoral arthritis.

The Agilium Freestep is used to treat OA, although it is not applied directly to the knee. Instead is worn on the foot, right inside the shoe! For targeted relieve, it alters the load-line of the knee – the point where the body weight impacts the cartilage.

The Agilium Softfit is a pull on knee brace with a textile base and single upright that stabilises and relieves the knee using a three point force system to offload the affected compartment (side) of the knee.

The Agilium Reactive also uses a three point force system to offload the affected compartment (side) of the knee. However, the innovative closure system in the upper calf provides comfort while sitting without compromising the stable position when standing.

The Agilium Patella combines a textile structure and stabilising component with a dynamic re-alignment mechanism enabling it to maintain the central alignment of the knee cap, reducing pressure behind the knee cap.

Find the appropriate brace with Agilium Select.

Visit our website or go to

If you would like to know more about any of these products please get in touch via or visit our website for more information:

Continue Reading


Masturbation linked to stroke in medical case study



Doctors in Japan have reported how masturbation sparked a bleed on the brain of a 51-year-old man; as published in the Journal of Stroke and Cerebrovascular Diseases.

Doctors at the Nagoya City University Graduate School of Medical Sciences in Japan explained that the man attended hospital after orgasming, with the sudden onset of a searing headache that lasted for around a minute. This was followed by an intense bout of vomiting.

A CT scan showed an acute subarachnoid hemorrhage in the left hemisphere.

The researchers note that masturbation causes an increase in heart rate, blood pressure, and noradrenaline plasma levels – which are likely to contribute to the risk of splitting a blood vessel in the brain and result in a hemorrhagic stroke.

The man was treated with stents and coiling, two techniques used to bolster the blood vessel and maintain blood flow to the brain, and he went on to make a full recovery.

The study authors say that they found just two other cases of masturbation-linked strokes in other scientific literature.

The Japanese man survived and was discharged after nearly two weeks in hospital in an “excellent” condition.

Continue Reading


Engineers develop ultrasound patch to monitor blood flow

Breakthrough could help to better predict stroke and other cardiovascular conditions earlier.



Engineers at the University of California San Diego have developed an ultrasound patch that can be worn on the skin. It monitors the blood flow through major arteries and veins deep within the body.

It is hoped that it could help clinicians diagnose cardiovascular conditions faster. It could also help to diagnose blockages in the arteries which could lead to strokes or heart attacks.

The ultrasound patch continuously monitors blood flow as well as blood pressure and heart function in real-time. Assessing how much blood flows through a patient’s blood vessels could help diagnose blood clots, heart valve problems and poor circulation in the limbs.

For many patients, blood flow is not measured during a regular visit to their doctors. It is usually assessed after a patient shows signs of cardiovascular problems.

The patch can be worn on the neck or chest and can measure cardiovascular signals up to 14 centimetres inside the body non invasively with high accuracy.

How the patch works

The patch is made of a thin, flexible polymer that sticks to the skin.

There is an array of millimetre-sized ultrasound transducers on the patch known as an ultrasound phased array.

These are individually controlled by a computer. Another feature is that the ultrasound beam can be tilted at different angles to areas in the body that are not directly below the patch.

It can operate in two modes. In one, all of the transducers can be synched together to transmit ultrasound waves which produce a high-intensity beam that focuses on one spot.

This can be up to 14cm deep in the body.

A wearable ultrasound patch on the skin

The other mode allows the transducers to be programmed to transmit out of sync producing beams at different angles.

In being able to manipulate the beams, it gives the device multiple capacities for monitoring central organs as well as blood flow with high resolution.

When the electricity flows through the transducers, they vibrate while emitting ultrasound waves that travel through the skin into the body.

When they penetrate a blood vessel, they encounter the movement of red blood cells flowing inside. The cell movement changes how the waves are transmitted back to the patch.

This change is recorded by the patch and creates a visual recording of the blood flow. It can also be used to create moving images of the heart’s walls.

The benefits:

Sheng Xu, professor of nanoengineering at the UC San Diego Jacobs School of Engineering said:

“This type of wearable device can give you a more comprehensive, more accurate picture of what’s going on in deep tissues and critical organs like the heart and the brain, all from the surface of the skin.”

Xu added: “This is a first in the field of wearables because existing wearable sensors typically only monitor areas right below them.

“If you want to sense signals at a different position, you have to move the sensor to that location. With this patch, we can probe areas that are wider than the device’s footprint. This can open up a lot of opportunities.”

The researchers say that the easy to use patch could allow patients to wear the patch and monitor the results themselves. It doesn’t depend on a technician to read the results

The next stage

The patch is not yet ready for clinical use. The researchers are currently working on a way to make the electronics wireless as it currently needs a power source and benchtop machine.

Image credit: Nature Biomedical Engineering

Continue Reading


Get the NR Times update