Connect with us
  • Elysium

Dementia

Time until dementia symptoms appear can be estimated by brain scan

Published

on

An algorithm has been devised to estimate when a person who is likely to develop Alzheimer’s disease, but has no cognitive symptoms, will start showing signs of the condition.

The new approach uses data from an amyloid positron emission tomography (PET) brain scan to gauge brain levels of the key Alzheimer’s protein amyloid beta.

In those who will eventually develop Alzheimer’s dementia, amyloid silently builds up in the brain for up to two decades before the first signs of confusion and forgetfulness appear, one the ‘tipping point’ is reached in amyloid accumulation.  

Amyloid PET scans already are used widely in Alzheimer’s research, and this algorithm – devised by researchers at Washington University School of Medicine in St. Louis – represents a new way of analysing such scans to approximate when symptoms will arise. 

Using a person’s age and data from a single amyloid PET scan, the algorithm yields an estimate of how far a person has progressed toward dementia — and how much time is left before cognitive impairment sets in.

“I perform amyloid PET scans for research studies, and when I tell cognitively normal individuals about positive results, the first question is always, ‘How long do I have until I get dementia?’,” said senior author Suzanne Schindler, an assistant professor of neurology. 

“Until now, the answer I’d have to give was something like, ‘You have an increased risk of developing dementia in the next five years.’ But what does that mean? 

“Individuals want to know when they are likely to develop symptoms, not just whether they are at higher risk.”

Schindler and colleagues analysed amyloid PET scans from 236 people participating in Alzheimer’s research studies through Washington University’s Charles F. and Joanne Knight Alzheimer Disease Research Center. 

The participants were an average of 67 years old at the beginning of the study. All participants underwent at least two brain scans an average of four-and-a-half years apart. 

The researchers applied a widely used metric known as the standard uptake value ratio (SUVR) to the scans to estimate the amount of amyloid in each participant’s brain at each time point.

The researchers also accessed over 1,300 clinical assessments on 180 of the participants. The assessments typically were performed every one to three years. Most participants were cognitively normal at the start of data collection, so the repeated assessments allowed the researchers to pinpoint when each participant’s cognitive skills began to slip.

Schindler spent years trying to figure out how to use the data in amyloid PET scans to estimate the age at which symptoms would appear. The breakthrough came with the realisation that amyloid accumulation has a tipping point and that each individual hits that tipping point at a different age.

After this tipping point, amyloid accumulation follows a reliable trajectory.

“You may hit the tipping point when you’re 50; it may happen when you’re 80; it may never happen,” Schindler said. 

“But once you pass the tipping point, you’re going to accumulate high levels of amyloid that are likely to cause dementia. 

“If we know how much amyloid someone has right now, we can calculate how long ago they hit the tipping point and estimate how much longer it will be until they are likely to develop symptoms.”

People in the study who reached the tipping point at younger ages took longer to develop cognitive symptoms than those who reached it later in life.

Participants who hit the tipping point at age 50 typically took nearly 20 years to develop symptoms; those who hit it at age 80 took less than ten years.

“When we look at the brains of relatively young people who have died with Alzheimer’s, they typically look pretty healthy, other than Alzheimer’s,” Schindler said. 

“But older people more frequently have damage to the brain from other causes, so their cognitive reserves are lower, and it takes less amyloid to cause impairment.”

Dementia

Researchers find Alzheimer’s link in brain’s immune cells

The microglia breakthrough could help in the development of new therapies for patients

Published

on

The discovery of a new role for the brain’s immune cells could have implications for conditions including Alzheimer’s disease and stroke.

A research team has uncovered a vital but previously unknown role for microglia, immune cells that protect the brain from disease and injury, and help to regulate blood flow and maintain the brain’s critical blood vessels.

The researchers, from the University of Virginia School of Medicine, believe the findings could prove important in cognitive decline, dementia and stroke, among other conditions linked to diseases of the brain’s small vessels. 

“Precise blood vessel function is critical to accommodate the extreme energy demands of the brain for normal brain function,” said UVA’s Ukpong B. Eyo, of UVA’s Department of Neuroscience, the UVA Brain Institute and UVA’s Center for Brain Immunology and Glia (BIG). 

“These findings suggest previously unknown roles for these brain cells in the proper maintenance of blood delivery to the brain and provide novel opportunities to intervene in contexts where blood perfusion to the brain is impaired.”

The researchers believe their new findings could have significant implications for diseases that affect the small vessels of the brain. These conditions are thought to contribute to stroke, Alzheimer’s, loss of balance and mental decline, among other serious health problems.

“We are currently expanding this research into an Alzheimer’s disease context in rodents to investigate whether the novel phenomenon is altered in mouse models of the disease and determine whether we could target the mechanisms we uncovered to improve known deficits in blood flow in such a mouse model of Alzheimer’s,” Eyo said. 

“Our hope is that these findings in the lab could translate into new therapies in the clinic that would improve outcomes for patients.”

Scientists have known that microglia play many important roles in the brain and that microglia also facilitate the formation of the brain’s complex network of blood vessels during development. In Alzheimer’s disease, for example, recent work suggests that the loss of the immune cells is thought to increase harmful plaque buildup in the brain.

Scientists have been unsure, however, what role microglia play in maintaining blood vessels in a normal, healthy brain. The new research reveals for the first time that the cells are critical support staff, tending the vessels and even regulating blood flow.

The UVA researchers identified microglia associating with the brain’s capillaries, determined what the immune cells do there and revealed what controls those interactions. Among the cells’ important responsibilities is helping to regulate the diameter of the capillaries and possibly restricting or increasing blood flow as needed.

“Researchers have been studying these cells in the living brain for over two decades but this is the first time we are able to get an idea of these mechanisms of microglia-blood vessel interaction,” said Eyo, an expert on microglia. 

“It’s an exciting time to be the first to make these findings here at UVA.”

Continue Reading

Dementia

Is this the cause of Alzheimer’s disease?

Australian scientists have identified the probable ‘blood-to-brain pathway’ that can lead to the neurodegenerative condition

Published

on

Groundbreaking new research has discovered a likely cause of Alzheimer’s disease, in a significant finding that offers potential new prevention and treatment opportunities. 

The study identified that a probable cause of Alzheimer’s disease was the leakage from blood into the brain of fat-carrying particles transporting toxic proteins.

Lead investigator Professor John Mamo said his collaborative group of Australian scientists had identified the probable ‘blood-to-brain pathway’ that can lead to Alzheimer’s disease, the most prevalent form of dementia globally.

“While we previously knew that the hallmark feature of people living with Alzheimer’s disease was the progressive accumulation of toxic protein deposits within the brain called beta-amyloid, researchers did not know where the amyloid originated from, or why it deposited in the brain,” said Professor Mamo, of the Curtin Health Innovation Research Institute (CHIRI).

“Our research shows that these toxic protein deposits that form in the brains of people living with Alzheimer’s disease most likely leak into the brain from fat carrying particles in blood, called lipoproteins.

“This ‘blood-to-brain pathway’ is significant because if we can manage the levels in blood of lipoprotein-amyloid and prevent their leakage into the brain, this opens up potential new treatments to prevent Alzheimer’s disease and slow memory loss.”

Building on previous award-winning research that showed beta-amyloid is made outside the brain with lipoproteins, Professor Mamo’s team tested the pioneering ‘blood-to-brain pathway’ by genetically engineering mouse models to produce human amyloid-only liver that make lipoproteins.

“As we predicted, the study found that mouse models producing lipoprotein-amyloid in the liver suffered inflammation in the brain, accelerated brain cell death and memory loss,” Professor Mamo said.

“While further studies are now needed, this finding shows the abundance of these toxic protein deposits in the blood could potentially be addressed through a person’s diet and some drugs that could specifically target lipoprotein amyloid, therefore reducing their risk or slowing the progression of Alzheimer’s disease.”

Alzheimer’s WA Chairman Adjunct Professor Warren Harding said the findings may have a significant global impact for the millions of people living with Alzheimer’s disease.

“Having universities like Curtin working with the pharmaceutical industry is important if we are to tackle this devastating disease,” Mr Harding said.

“In Australia, approximately 250 people are diagnosed with dementia daily, adding to the staggering half a million Australians who are already living with dementia. 

“Without significant medical advances like the breakthrough Professor Mamo’s team has made, it is estimated that the number of Australians living with dementia will exceed one million by 2058. This has a significant impact on families, carers and communities.”

Professor Mamo and his research team’s previous research in this area was awarded the NHMRC-Marshall and Warren Award for the most innovative and potentially transformative research.

Currently, the team is conducting a clinical trial, the Probucol in Alzheimer’s-clinical trial, which is based on previous findings that a historic cardiovascular agent lowers lipoprotein-amyloid production and supports cognitive performance in mice. The mouse models used for this research were developed together with Ozgene.

Continue Reading

Dementia

Alzheimer’s could be detected before symptoms appear

People at a higher genetic risk may show differences in brain structure and in cognitive test scores

Published

on

Healthy people with a higher genetic risk of Alzheimer’s disease may show differences in brain structure and in cognitive test scores relating to reasoning and attention, a new study has revealed.

The research suggests that, although the association between these differences in people with a higher genetic risk of Alzheimer’s disease were small, signs of the neurodegenerative disease may be detectable before significant symptoms are obvious.

The study, from the University of Glasgow, is the largest study to date investigating the genetic risk for late-onset Alzheimer’s disease and non-demented structural brain MRI and cognition phenotypes.

Its findings have been hailed as a potential “real game changer” by the Alzheimer’s Society.

Alzheimer’s disease (AD) affects several brain regions, but among the earliest includes the hippocampus, which is vital for processing memory and learning.

Genetic factors are known to play a role in developing AD dementia, and researchers can use polygenic risk scoring – a method used to estimate an individual’s genetic risk of developing a particular disease, such as AD.

In this study, the researchers calculated a polygenic genetic risk score based on a large number of mutations for 32,790 generally-healthy adults without dementia from the UK Biobank, a large-scale biomedical database and research resource, to see if their lifetime genetic risk of AD was associated with average differences in brain structure and cognitive performance.

Rachana Tank, a lead author on the study, said: “Our findings are novel because they show the effects of genetic risk may, to a certain extent, be apparent long before a clinical dementia diagnosis. Although we cannot say for certain that these differences are early signs of dementia per se, it is important that we do further research in this area.

Dr Donald Lyall, from the University’s Institute of Health and Wellbeing, said: “These findings could lead to a better, more meaningfully informative way of gauging Alzheimer’s disease risk than current methods of inquiring about a family history of dementia, as being able to identify individuals at risk of worse cognitive abilities and potentially accelerated decline could greatly improve diagnosis and treatment options in future.”

Fiona Carragher, director of research and influencing at Alzheimer’s Society, said: “If we can accurately identify people at risk of developing Alzheimer’s disease later in life, it could be a real gamechanger.

“Early detection of those at a higher risk has the potential to pave the way for new treatments in the future and help researchers understand what causes diseases like Alzheimer’s to develop.

“The scale of this study is significant. It adds further evidence to the theory that some brain changes associated with Alzheimer’s disease can start many years before symptoms such as memory loss.

“However, it only looked at people from a white European background – we need to better understand whether there are associations between different genetic risk factors and changes in the brain in people from other ethnic communities.

“Research will beat dementia, but we need more funding. The Government must honour their commitment to double dementia research funding to provide hope for future generations. We owe to the 850,000 people in the UK currently living with dementia.”

 

Continue Reading

Newsletter



Get the NR Times update

Trending