Connect with us
  • Elysium

News

Your favourite music can send your brain into a pleasure overload

Published

on

We all know that moment when we’re in the car, at a concert or even sitting on our sofa and one of our favourite songs is played. It’s the one that has that really good chord in it, flooding your system with pleasurable emotions, joyful memories, making your hair stand on edge, and even sending a shiver or “chill” down your spine.

About half of people get chills when listening to music. Neuroscientists based in France have now used EEG to link chills to multiple brain regions involved in activating reward and pleasure systems. The results are published in Frontiers in Neuroscience.

Thibault Chabin and colleagues at the Université de Bourgogne Franche-Comté in Besançon EEG-scanned the brains of 18 French participants who regularly experience chills when listening to their favourite musical pieces. In a questionnaire, they were asked to indicate when they experienced chills, and rate their degree of pleasure from them.

“Participants of our study were able to precisely indicate “chill-producing” moments in the songs, but most musical chills occurred in many parts of the extracts and not only in the predicted moments,” says Chabin.

When the participants experienced a chill, Chabin saw specific electrical activity in the orbitofrontal cortex (a region involved in emotional processing), the supplementary motor area (a mid-brain region involved in movement control) and the right temporal lobe (a region on the right side of the brain involved in auditory processing and musical appreciation). These regions work together to process music, trigger the brain’s reward systems, and release dopamine — a “feel-good” hormone and neurotransmitter. Combined with the pleasurable anticipation of your favorite part of the song, this produces the tingly chill you experience — a physiological response thought to indicate greater cortical connectivity.

“The fact that we can measure this phenomenon with EEG brings opportunities for study in other contexts, in scenarios that are more natural and within groups,” Chabin comments. “This represents a good perspective for musical emotion research.”
EEG is a non-invasive, highly accurate technique that scans for electrical currents caused by brain activity using sensors placed across the surface of the scalp. When experiencing musical chills, low frequency electrical signals called “theta activity” — a type of activity associated with successful memory performance in the context of high rewards and musical appreciation — either increase or decrease in the brain regions that are involved in musical processing.

“Contrary to heavy neuroimaging techniques such as PET scan or fMRI, classic EEG can be transported outside of the lab into naturalistic scenarios,” says Chabin. “What is most intriguing is that music seems to have no biological benefit to us. However, the implication of dopamine and of the reward system in processing of musical pleasure suggests an ancestral function for music.”

This ancestral function may lie in the period of time we spend in anticipation of the “chill-inducing” part of the music. As we wait, our brains are busy predicting the future and release dopamine. Evolutionarily speaking, being able to predict what will happen next is essential for survival.

Why should we continue to study chills?

“We want to measure how cerebral and physiological activities of multiple participants are coupled in natural, social musical settings,” Chabin says. “Musical pleasure is a very interesting phenomenon that deserves to be investigated further, in order to understand why music is rewarding and unlock why music is essential in human lives.

How the study was done:

The study was carried out on 18 healthy participants – 11 female and 7 male. Participants were recruited through posters on the campus and university hospital. They had a mean age of 40 years, were sensitive to musical reward, and frequently experienced chills. They had a range of musical abilities.

A high-density EEG scan was conducted as participants listened to 15 minutes of 90 s excerpts of their most enjoyable musical pieces. While listening, participants were told to rate their subjectively felt pleasure and indicate when they felt “chills”. In total, 305 chills were reported, each lasting, on average, 8.75 s. These findings implied increased brain activity in regions previously linked to musical pleasure in PET and fMRI studies.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

News

Abnormal proteins unleash latent toxicity in neurodegenerative diseases

Published

on

Most neurological diseases have one thing in common: an accumulation of abnormal proteins around neurons. Researchers agree that these improperly fabricated proteins become progressively more toxic by interacting with healthy proteins, disrupting their functions. This picture, however, may be incomplete, according to a study.

In a recent study published in the Journal of Cell Biology, scientists from Daegu Gyeongbuk Institute of Science and Technology, Korea, have discovered the mechanism of action by which abnormal proteins actually unleash the inherent, but normally latent, toxicity of a natural protein in neurons, causing defects in dendrites (branched parts of a neuron that connect to the next neuron). Therefore, their results provide some clarity as to what actually goes on in diseased neurons. Though the researchers focused on Machado-Joseph disease (MJD), the implications of their results are relevant to other diseases as well.

First, they screened existing data to find candidate genes that were abnormally expressed in MJD patients and mice models. Then, based on the results and using MJD flies as animal models, they identified a problematic transcription factor–a protein that controls and regulates the transcription from DNA of other proteins–called NF-κB. Though this transcription factor is essential for the proper functioning and development of dendrites, the researchers found that something went awry with it when abnormal MJD proteins were around.

Through multiple subsequent experiments, they elucidated a long chain of inhibitory/promoting interactions between native proteins that, at a certain point, clashes with the accumulated abnormal proteins and cascades into a “deregulation” of NF-κB. In turn, this improper regulation unlocks the latent toxicity of NF-κB.

Professor Sung Bae Lee, who led the study, remarks: “Our results open-up a new avenue toward finding cures for neurodegenerative diseases by creating inhibition-based drugs that target improperly regulated latent toxic factors.” Such new potential treatments would directly target the early stages of neuron damage, stopping neurological disorders right on their tracks.

This study lights a beacon of hope for many countries that are struggling to deal with the problems of an aging society. “Korea will become a super-aged society in the near future and establishing an appropriate social system to care for and treat people with neurodegenerative diseases is turning into an urgent social issue,” comments Professor Lee. This might be the first step in a completely new road toward treating these chronic age-related diseases.

Continue Reading

News

Individualised brain stimulation therapy improves language performance in stroke survivors

Published

on

Canadian scientists are pioneering the use of individualised brain stimulation therapy to treat aphasia in recovering stroke patients.

Aphasia is a debilitating language disorder that impacts all forms of verbal communication, including speech, language comprehension, and reading and writing abilities. It affects around one-third of stroke survivors, but can also be present in those with dementia, especially in the form of primary progressive aphasia.

“Aphasia can be very isolating,” says Dr. Jed Meltzer, Baycrest’s Canada Research Chair in Interventional Cognitive Neuroscience and a neurorehabilitation scientist at Baycrest’s Rotman Research Institute (RRI).

“It can negatively affect people’s personal relationships, and it often determines whether or not someone can continue working.”

In a recent study published in the journal Scientific Reports, Dr. Meltzer and his team tested language performance and used magnetoencephalography (MEG) to measure brain waves in 11 stroke survivors with aphasia before and after they underwent brain stimulation therapy.

The scientists found that the participants had abnormal electrical activity in brain regions close to but outside the area destroyed by the stroke. This abnormal activity was mainly a shift to slower brain waves, a pattern they have also observed in individuals with dementia.

“We mapped that abnormal activity and targeted it using non-invasive brain stimulation,” says Dr. Meltzer.

“We found that the stimulation made the activity more normal – that is, faster – and improved language performance in the short term.”

Previous research has demonstrated that brain stimulation can improve language performance in aphasia patients. However, this study is one of the first to link this performance improvement to changes in the brain activity surrounding the tissue destroyed by stroke.

In other words, this study suggests not only that brain stimulation works in aphasia patients, but also that the reason it works may be because it addresses abnormalities in the brain surrounding the destroyed tissue.

Another novel aspect of this work is that the scientists targeted each individual’s abnormal brain activity with the stimulation treatment. In contrast, the standard approach in previous studies has been to use the exact same treatment, targeting the same brain areas, on every patient.

“Our results demonstrate a promising method to personalise brain stimulation by targeting the dysfunctional activity outside of the destroyed brain tissue,” says Dr. Meltzer.

“Aphasia patients are highly variable in terms of where their brain damage is and what part of the brain should be stimulated for therapy. By mapping individuals’ brain waves, we are finding ways to target the right area to improve their language performance.”

While the participants in this study were stroke survivors, individuals with dementia have similar dysfunctional tissue in their brains, and the scientists are also examining the use of brain stimulation in this group.

Dr. Meltzer and his team looked at the immediate effects of single stimulation sessions in this study. As a next step, they have received funding from the Heart and Stroke Foundation to conduct a full-scale clinical trial looking at the longer-term impacts of repeated stimulation for stroke survivors with aphasia.

However, this study has been suspended because of the restrictions on in-person research participation due to the COVID-19 pandemic. In the meantime, the scientists have pivoted to optimize other aspects of aphasia treatment.

With additional funding, the researchers could test different types of stimulation with more patients over more sessions, allowing them to make faster progress in developing this treatment for individuals with aphasia.

Continue Reading

Legal

Living with a spinal cord injury and maintaining good mental health during lockdown

Published

on

In conjunction with Mental Health Day 2020, Irwin Mitchell organised a webinar offering valuable insights into maintaining good mental health for those affected by Spinal Cord Injury (SCI).

The speakers were a mixture of professionals and people living with a SCI.

Dr Parashar Ramanuj, Consultant Psychiatrist gave an in depth clinical insight as to what a person who has recently sustained an SCI may be dealing with and what ‘coping’ really means

Sophie Lester, a case manager and spinal occupational therapist provided some really helpful guidance on how to maintain good mental health alongside rehabilitation and sustaining a healthy balance.

Ian Younghusband and Anne Luttman-Johnson provided first-hand insight into specific challenges of living with SCI and offered tips, advice and practical strategies to develop coping mechanisms in support of you and/or your loved ones.

The webinar offered some invaluable tips, but after seven months of different degrees of lockdown there were two key points that struck home with me. These were firstly the importance of reaching out to friends, family and charities and secondly keeping to some sort of daily routine and structure which includes hobbies, interests and exercise.

Lockdown was difficult for everyone, but especially for those who were deemed to be high risk. For those living with a SCI, a common cold has the potential to be life threatening. Most people with a SCI live with suppressed immune systems and/or possible respiratory issues, and so the possible impact of coronavirus has the potential to be devastating. Accordingly, people with a SCI were considered to be potentially high risk and were advised to shield.

For anyone who was asked to shield, in order to protect themselves, they were advised to isolate and effectively cut themselves off from their families, support networks and normal daily routines. This would have undoubtedly had an impact upon their mental health and wellbeing.

#TogetherInIsolation

In response to the growing situation, a number of positive and innovative projects have been launched to support the tens of thousands of SCI people who were isolating.

The Spinal Injuries Association (“SIA”) set up a movement, Together in Isolation. The SIA along with other charities and partners, joined forces to support and provide advice to those living with a SCI.

This included weekly inspirational blogs, an online drop-in café at 3pm every Wednesday with SCI Nurse Specialists and Horatio’s Garden providing gardening tips. Back Up, another national SCI charity also set up an online BackUp Lounge for people to just chat.

NeuroKinex is a not for profit organisation which in usual times, provides hands-on activity based rehabilitation for those living with an SCI. They continued to provide therapies and treatment virtually for a number of their clients, providing continuity of their rehabilitation, treatment and routine.

Online accessible experiences

Accessible exercise and fitness and wellness experiences have also become available online, to assist wheelchair users to continue to access exercise from home.

AirBNB launched their ‘experiences’ back in 2017, but when travel had to stop, these converted to virtual experiences with the option of filtering your results to those designed for accessibility. The experiences which have been featured include seated fitness and wellness experiences including Cardiobox, seated adaptive yoga, wheelchair dance and fitness, Mindfulness and Positive thinking with Paralympic heroes. Back Up moved their national wheelchair skills to virtual videos.

Additionally a number of free accessible exercise videos have been shared on social media. Ella, a GB U25 Wheelchair basketball player created Ella’s Wheelchair Workouts, a page on YouTube and Facebook offering and sharing exercise videos to do at home. She does this in conjunction with GymPossible an accessible gym in the North East who then started to produce adaptive fitness videos online.

Looking forward

The last seven months have been tough for everyone, and I am sure that it has had a huge impact on mental health across the country. But I am encouraged by the innovation and sense of community fostered by the use of online and virtual communication which has been sparked by this pandemic, and hope it has assisted some people to be able to continue with accessing their support networks and connecting with others, while participating in their hobbies and exercising from home.

Having access to positive experiences, friendships and exercise virtually when we can’t be there in person helps maintain good mental health. And although it doesn’t replace face to face in person experiences, I am hopeful that this positive community movement continues when life returns to what will be our new ‘normal’.

For those who are interested, I would really recommend watching the webinar recording which gives practical tips and guidance. This can be seen below:


Written by Jessica Bowles, a solicitor specialising in serious injury with a specific interest in Spinal Cord Injuries and rehabilitation at Irwin Mitchell.

Continue Reading
Softer Foods

Trending