Blood pressure can be controlled without drugs after spinal cord injury, new research has revealed.
Spinal cord stimulators can bridge the body’s autonomous regulation system, controlling blood pressure without medication, the study found.
Led by Dr Aaron Phillips at the University of Calgary’s Cumming School of Medicine (CSM) and Grégoire Courtine, from the Swiss Federal Institute of Technology (EPFL), the study has been hailed as having “life-changing” consequences for people with spinal cord injury.
“The spinal cord acts as a communication line allowing the brain to send signals to tell the body such as when and how to move, as well as how to control vital functions, including blood pressure,” says Dr Phillips, co-principal investigator and assistant professor at the CSM.
Dr Richi Gill and his family
“This communication line is broken after a spinal cord injury. We created the first platform to understand the mechanisms underlying blood pressure instability after spinal cord injury, which allowed us to develop a new cutting-edge solution.”
And the solution is already delivering rewards, with Dr Richi Gill, the study’s first participant in a series of clinical trials.
Dr Gill broke his neck three years ago in a boogie board accident while on holiday with his young family.
Getting mobile again with the use of a wheelchair is the first thing most people notice, he says. However, for those with a spinal cord injury, what is happening inside the body also severely affects their quality of life.
“What many people don’t realise is that a spinal cord injury prevents some systems within the body from regulating automatically,” says the 41-year-old.
“My blood pressure would drop drastically, leaving me fatigued, dizzy, and unable to focus. The condition can be life threatening, requiring medication for life.
“It’s exciting to see the science help push things forward. I’m excited that Calgary will be one of the sites for a clinical trial. Research made a positive effect on my life and I’m glad others will benefit, too.”
In the study, targeted epidural electrical stimulation (EES) of the spinal cord was used to stabilise haemodynamics, or blood flow throughout the body, allowing for vital organs to maintain an appropriate supply of blood.
The researchers discovered the exact placement on the spine for their stimulator, and the circuitry of the sympathetic nervous system underlying blood pressure control.
This new knowledge allowed for the development of a neuroprosthetic closed-loop communication system, to replace lost haemodynamic control.
“We are really excited that people with spinal cord injury are able to stop their blood pressure medication and get back to enjoying a full daily routine with improved blood flow to their brain and organs,” says Dr Sean Dukelow, clinician scientist at the CSM and author on the study.
“People feel more alert, are able to be upright and in their wheelchair without losing consciousness, and over the long-term we think this will reduce the risk of heart disease and stroke.”
Work is already underway to take the project forward into mainstream use, adds Dr Courtine.
“We are going to collaborate with a company called Onward to develop a neurostimulation system dedicated to the management of blood pressure in people with spinal cord injury,” he says.
Findings from pioneering new research suggest there could be a new approach to treating one of the most common and devastating forms of brain cancer in adults – Glioblastoma Multiforme (GBM).
In a seven-year study,scientists from the University of Surrey show that a short chain of amino acids (the HTL-001 peptide) is effective at targeting and inhibiting the function of a family of genes responsible for the growth of GBM – Hox genes. The study was conducted in cell and animal models.
The HTL-001 peptide used in the study has undergone safety testing and is suitable for patient trials. These trials are now being considered in GBM and other cancers.
The study adds further progress and gives new hope in an area where advances have not been as rapid as in other cancer types.
Professor Hardev Pandha, project lead and Professor of Medical Oncology at the University of Surrey, said: “People who suffer from GBM have a five per cent survival rate over a five-year period – a figure that has not improved in decades.
“While we are still early in the process, our seven-year project offers a glimmer of hope for finding a solution to Hox gene dysregulation, which is associated with the growth of GBM and other cancers, and which has proven to be elusive as a target for so many years.”
Ironically, Hox genes are responsible for the healthy growth of brain tissue but are ordinarily silenced at birth after vigorous activity in the growing embryo.
However, if they are inappropriately ‘switched on’ again, their activity can lead to the progression of cancer. Hox gene dysregulation has long been recognised in GBM.
The project was carried out in collaboration with the universities of Surrey, Leeds and Texas, and HOX Therapeutics, a University of Surrey start-up company based on the University’s Surrey Research Park.
Professor Susan Short, co-author of the study from the University of Leeds, said: “We desperately need new treatment avenues for these aggressive brain tumours.
“Targeting developmental genes like the HOX genes that are abnormally switched on in the tumour cells could be a novel and effective way to stop glioblastomas growing and becoming life-threatening.”
James Culverwell, CEO of HOX Therapeutics, said: “HOX Therapeutics is excited to be associated with this project and we hope that with our continuing support, this research will eventually lead to novel and effective treatments for both brain and other cancers where HOX gene over-expression is a clear therapeutic target.”
Pioneering brain cancer research has been backed by a new six-figure award, to support its ambition to advance diagnosis and treatments.
Dr Sharel Peisan E, a chemistry lecturer at Teesside University, will examine the nanoscale electrochemistry of brain cancer cells.
Using a multifunctional nanoscale electrochemical imaging platform, Dr E will be able to take a closer look at brain tumour cells and their processes to gain a better understanding of their biology.
The technology uses tiny electrodes to gain an extremely close and detailed visualisation of the biology of living cells.
This research project, backed by an award of £100,000, aims to explore how brain cancer reacts to different therapies on a cellular level, which will be applied to improving or designing more effective treatments for cancer patients.
It will also be able to provide insight into other neurodegenerative diseases such as Alzheimer’s in much the same way.
“Glioblastoma is one of the most devastating cancers, although its biology remains somewhat of a mystery in cancer research, with brain cancer cells being difficult to analyse using current methods of examination,” explained Dr E, who is based at Teesside University’s National Horizons Centre.
NHC National Horizons Centre
“My research will use advanced nanoscale imaging to provide a new view of the solid, liquid and gaseous processes, known as heterogeneous processes, on the cancer cells at the nanoscale, providing additional information on the glioblastoma biology which has previously been unattainable through microscopic techniques, allowing us to improve current diagnostics and treatments.”
Dr E won the grant from the Academy of Medical Sciences as part of the Springboard Award, which provides funding and career support for innovative bioscientists.
Teesside University’s National Horizons Centre, based at the Darlington campus, is a £22.3million centre of excellence for innovation and training in biosciences and healthcare, with strength in cancer research.
Professor Vikki Rand, interim director of the National Horizons Centre, said: “Here at the National Horizons Centre, we are positioned at the forefront of the biosciences and healthcare sector, leading groundbreaking research to drive progress in key areas including disease and climate change.
“We are devoted to gaining as much knowledge about cancer as we can, and our work in cancer research is particularly impressive, directly influencing the wider healthcare sector through studies which inform new and improved therapies to help real patients which is, after all, what our research is all about.
“Grants such as the Springboard Award from the Academy of Medical Sciences are extremely important and we are thrilled that Dr E has won this very substantial funding for her research.”
A novel method is being pioneered for the treatment of brain haemorrhage, which it is hoped could reduce the risk of brain damage and disability and increase patients’ chances of survival.
Brain haemorrhages, or haemorrhagic strokes, occur when blood leaks from a blood vessel in or around the brain and in the UK accounts for about 15 per cent of all strokes.
The reaction of the brain to the sudden presence of excess blood can lead to brain damage, disability and death – with almost a half of patients going on to die within a month as a result of suffering a brain haemorrhage.
Researchers at Nottingham Trent University are now collaborating with the University of Manchester to find a way to prevent the damage to brain cells caused by iron from the blood that builds up in the brain after a haemorrhage.
“The death rates due to brain haemorrhage have not changed for several decades. This sort of research is therefore vital to find the new treatments necessary to improve survival,” said Professor Stuart Allan of the University of Manchester.
The researchers – funded by Brain Research UK – are focusing on drugs called ‘iron chelators’, which bind to iron to prevent its accumulation in the body.
They will package these iron chelator drugs into bubbles (‘liposomes’) which can be used to more effectively deliver drugs into the body.
It can be challenging to target drugs to affected areas of the brain due to the ‘blood brain barrier’, which works to prevent potentially harmful toxins in the body from reaching it.
But the team hopes its novel approach will enable the drug to stay in the blood stream for a longer period of time and allow enough drug to get to the area of the brain that contains the bleeding, while also not exposing the rest of the body to unnecessary side effects.
The work, which will involve the use of mice and patient samples, will take about three years.
The study involves a multidisciplinary team of scientists led by Nottingham Trent University’s Dr Zahraa Al-Ahmady, in collaboration with Prof Stuart Allan, Dr Adrian-Parry Jones and Dr Ben Dickie at the University of Manchester and NTU’s Prof Sergio Rutella and Prof Graham Ball.
“Unfortunately, no specific medications currently exist to prevent or treat brain haemorrhage,” said lead researcher Dr Al-Ahmady.
“There are severe issues related to having this blood and iron accumulation in the brain, which contributes to the death of brain cells.
“We hope our approach will prevent this excess iron from damaging neurons and other tissue and be a new approach to blocking blood induced brain damage after bleeding.
“Many of those who suffer a brain haemorrhage will sadly die and those who survive can have permanent disabilities and so the creation of new drugs is essential.
“We are aiming to find a way to enable treatment to better infiltrate the brain and to remain at the disease site for longer before more serious damage occurs.”
Caroline Blakely, chief executive of Brain Research UK, said: “We’re excited to be funding this important work by Dr Al-Ahmady and collaborators, and hope that it will prove to be an important step towards improving outcomes for patients who have suffered a brain haemorrhage.
“We are only able to fund research like this thanks to the extraordinary efforts of our supporters, many of whom are raising funds in tribute to loved ones affected by brain conditions.”
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
__cfduid
1 month
The cookie is used by cdn services like CloudFare to identify individual clients behind a shared IP address and apply security settings on a per-client basis. It does not correspond to any user ID in the web application and does not store any personally identifiable information.
_GRECAPTCHA
5 months 27 days
This cookie is set by Google. In addition to certain standard Google cookies, reCAPTCHA sets a necessary cookie (_GRECAPTCHA) when executed for the purpose of providing its risk analysis.
cookielawinfo-checkbox-advertisement
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics
This cookies is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
1 year
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
1 year
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Cookie
Duration
Description
_gat
1 minute
This cookies is installed by Google Universal Analytics to throttle the request rate to limit the colllection of data on high traffic sites.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
_ga
2 years
This cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gid
1 day
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the wbsite is doing. The data collected including the number visitors, the source where they have come from, and the pages viisted in an anonymous form.
iutk
5 months 27 days
This cookie is used by Issuu analytic system. The cookies is used to gather information regarding visitor activity on Issuu products.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
NID
6 months
This cookie is used to a profile based on user's interest and display personalized ads to the users.
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
Cookie
Duration
Description
cookielawinfo-checkbox-functional
1 year
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-others
No description
lfuuid
9 years 11 months
Third party (Lead Forensics) cookie which enables us to track visitor behaviour on our site. Tracking is performed anonymously until a user identifies themselves by submitting a form.