The brain injury technology University College London has been working on for eight years looks decidedly unremarkable.

Barely noticeable in the neonatal skyline of equipment is a trolley housing a laptop and what looks like a projector.

Yet the data it offers clinicians could accelerate improved care for brain injured babies in their crucial first few days. Currently, when babies suffer brain injury at or soon after birth due to lack of oxygen to the brain, doctors must wait several days until the newborn is stable enough for an MRI scan. Only then, usually at least four days after the birth, can they detect and assess the injury.

In these days before the MRI, there is poor visibility on whether treatments are working or how severe the injury may be.

But a new device, which has now passed a feasibility test involving over 50 babies with hypoxic-ischemic encephalopathy, could close this window of missed opportunity.

Dr Ilias Tachtsidis, biomedical engineer and team leader on the project, explains: “We wanted to know, from day one, what is happening to the biochemistry of the brain tissue in these babies. EEG shows how well the brain is doing in terms of the neuronal activity but it doesn’t show anything about how well the brain is getting oxygen or using it to produce energy.

“The other instrument at the doctors’ disposal is the MRI, but it is very difficult to take a sick, one-day-old baby for an MRI scan. The challenge was to develop a device that we can use immediately after the baby is born to inform the clinical team about the brain health of that baby.”

UCL engineers, doctors and scientists have combined forces in overcoming this challenge since 2010 – supported by funds from the Welcome Trust and access to UCL Hospital. The product of their endeavours is a seemingly transformative piece of cotside kit for neonatal intensive care wards.

Its magic is made possible through a technology that started life in the late seventies and has since emerged as a game- changer in internal body monitoring. Broadband near-infrared spectroscopy uses light with wavelengths just beyond the red end of the rainbow and is invisible to the eye. This near infrared light can travel far into the body – even through bone – while other colours with shorter wavelengths are absorbed and don’t pass through.

Light can reveal changing oxygen levels in the blood pumping through arteries and veins. Certain molecules in the brain, such as oxygen-carrying chemicals in the blood and cytochrome c oxidase in mitochondria, change colour depending on their activity and oxygen levels.

Different colour molecules absorb and reflect different colours of light, so by measuring the colours of the light passing through the brain, it is possible to work out the volume and activity of these molecules.

This data shows doctors which areas of the brain are working properly or have been damaged due to a lack of oxygen.

In the device, near-infrared light travels down optical fibres and is shone on the baby’s head. Some of it passes through the skull and brain and comes back to the surface.

This returning light is picked up by another optical fibre and travels to a spectrometer, which measures the relative amounts of different coloured light in the beams.

The light is then split into a spectrum of its constituent colours, using a prism or ‘diffraction grating’. Then a camera detects the amounts of each colour of light.

Finally, a computer calculates changes in the way certain parts of the brain are using oxygen and generating energy, giving a readout of brain metabolism and activity.

Tachtsidis says: “Our feasibility study has shown that the measurements can identify and classify newborn babies from day one; which ones are going to have a severe brain injury? Which will have severe or mild neuro- development issues?

“Our technology has shown a very high specificity in terms of classifying where the babies are going to be at two years old and five years old, for example. Are they going to have neurodevelopment issues, cerebral palsy or cognitive issues? We can identify this in babies from day one.”

Given that the device is cheap, cotside, non- invasive and harmless, industry parties are understandably circling; and Tachtsidis is hopeful of an eventual mainstream roll-out. It could take several years, however.

“Launching a medical device is a long process that requires a lot of regulation. We’ve had quite a few phone calls asking about
the device from various industry players, especially those interested in intensive care. I am hoping, with the help of UCL, we can manage to disseminate the value of this technology to the industry and get closer to a widely-available device.”

Next on UCL’s immediate agenda is figuring out how the data generated by the technology can influence better outcomes for brain injured newborns.

“We have a long way to go,” he says. “We still have to test how we can use this technology to manage treatment. We now have technology that, very early on, can prognosticate the impact of the brain injury on the baby.”

According to the National Neonatal Database, around three in 1,000 babies born in England suffer brain injury at or soon after birth, due to lack of oxygen during delivery. In the US, this figure is estimated at between one and six. More than half of affected newborns will develop disabilities, while one in 10 dies.

The risk is higher in babies born before 37 weeks, where up to 26 in 1,000 babies are affected. The standard approach in hospitals is to cool the baby’s body temperature to slow their metabolic processes.

Often, babies are placed on a water-filled cooling blanket and monitored over several days. An IV may help to further reduce body temperature. According to one prominent expert in the field, Dr. Inder of Washington University School of Medicine, “neonatal therapeutic hypothermia can reduce the chance of severe brain injury by 25 per cent in term-born babies with poor transition or low Apgar scores after birth”.

Since the treatment is not effective in every baby, however, Tachtsidis believes the new light technology could save time by quickly identifying which newborns are not benefitting from it.

“The clinical team needs to know very early on if this is not working for the infants to decide what else they can do about [the injury]. They need a measurement that enables this.”

There are various hurdles to get through before UCL’s technology is commercially available to hospital management. “Clearly we are looking at how we can disseminate our work and roll it out to more hospitals.

“We also need to build a demonstrator unit and, once we have that, we can move towards a clinical trial. There may also be some education required in terms of helping clinicians to understand the data and act on it.”

If UCL’s bright minds can prove to the world that their creation is a worthy addition to the hospital cotside, it could be a revelation in brain injury care.

The impact of a brain injury at birth due to decreased oxygen (hypoxia) and blood flow (ischemia) can lead to intensive, life-long care needs. Speeding up the immediate response time to unfolding events in the brain might change the life trajectory of newborns.

In the UK, the healthcare sector’s approach to baby brain injury risk has been a contentious issue in recent years. In some quarters, the drive for natural births has been blamed for a seeming rise in maternity ward injuries.

Last year the Royal College of Midwives formally announced it had discontinued its 12-year campaign for normal births without medical intervention.

Meanwhile, a 2017 study by the Royal College of Obstetricians and Gynaecologists suggests that most baby brain injuries in labour are avoidable.

It analysed 1,136 stillbirths, neonatal deaths and brain injuries on UK maternity wards in 2015. Three quarters of the babies – 854 of which suffered a brain injury – might have had a different outcome if they had received different care, researchers said.

While baby brain injury is a medical issue that can have a profound effect on families, their financial impact is also under scrutiny.

A report by NHS Resolution last year showed that compensation claims for new-borns with brain injuries or cerebral palsy soared 23 per cent in 2016/17 to 232. Their collective claim value was £1.9bn. It is predicted that the per- child claim value could soon hit £20m, NHS Resolution said.

For all concerned – families, the NHS, neonatal professionals and, of course, the tiny patients who will enter the world fighting for survival – much is riding on the success of UCL’s promising project.

Find out more at www.metabolight.org